000 03444nam a22005175i 4500
003 DE-He213
005 20151013141919.0
007 cr nn 008mamaa
008 141020s2015 gw | s |||| 0|eng d
020 _a9783642542657
_9978-3-642-54265-7
024 7 _a10.1007/978-3-642-54265-7
_2doi
050 4 _aQA402.5-402.6
072 7 _aPBU
_2bicssc
072 7 _aMAT003000
_2bisacsh
082 0 4 _a519.6
_223
100 1 _aKhan, Akhtar A.
_eauthor.
245 1 0 _aSet-valued Optimization
_h[electronic resource] :
_bAn Introduction with Applications /
_cby Akhtar A. Khan, Christiane Tammer, Constantin Zălinescu.
260 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2015.
300 _aXXII, 765 p. 29 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aVector Optimization,
_x1867-8971
505 0 _aIntroduction -- Order Relations and Ordering Cones -- Continuity and Differentiability -- Tangent Cones and Tangent Sets -- Nonconvex Separation Theorems -- Hahn-Banach Type Theorems -- Hahn-Banach Type Theorems -- Conjugates and Subdifferentials -- Duality -- Existence Results for Minimal Points -- Ekeland Variational Principle -- Derivatives and Epiderivatives of Set-valued Maps -- Optimality Conditions in Set-valued Optimization -- Sensitivity Analysis in Set-valued Optimization and Vector Variational Inequalities -- Numerical Methods for Solving Set-valued Optimization Problems -- Applications.
520 _aSet-valued optimization is a vibrant and expanding branch of mathematics that deals with optimization problems where the objective map and/or the constraints maps are set-valued maps acting between certain spaces. Since set-valued maps subsumes single valued maps, set-valued optimization provides an important extension and unification of the scalar as well as the vector optimization problems. Therefore this relatively new discipline has justifiably attracted a great deal of attention in recent years. This book presents, in a unified framework, basic properties on ordering relations, solution concepts for set-valued optimization problems, a detailed description of convex set-valued maps, most recent developments in separation theorems, scalarization techniques, variational principles, tangent cones of first and higher order, sub-differential of set-valued maps, generalized derivatives of set-valued maps, sensitivity analysis, optimality conditions, duality, and applications in economics among other things.
650 0 _aMathematics.
650 0 _aMathematical optimization.
650 0 _aOperations research.
650 1 4 _aMathematics.
650 2 4 _aOptimization.
650 2 4 _aOperation Research/Decision Theory.
650 2 4 _aContinuous Optimization.
650 2 4 _aOperations Research, Management Science.
650 2 4 _aGame Theory, Economics, Social and Behav. Sciences.
700 1 _aTammer, Christiane.
_eauthor.
700 1 _aZălinescu, Constantin.
_eauthor.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642542640
830 0 _aVector Optimization,
_x1867-8971
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-54265-7
912 _aZDB-2-SBE
942 _2ddc
_cEBOOK
999 _c3299
_d3299