Central Bank of Nigeria Library

Image from Google Jackets

Multicollinearity in linear economic models /

By: Contributor(s): Material type: TextTextSeries: Tilburg studies on economicsPublication details: The Netherlands : Tilburg University Press, c1973.Description: viii, 103 p. :illISBN:
  • 9023729102
Subject(s): DDC classification:
  • 330.01'51 NEE
LOC classification:
  • HB141 .N43
Summary: It was R. Frisch, who in his publications 'Correlation and Scatter Analysis in Statistical Variables' (1929) and 'Statistical Confluence Analysis by means of Complete Regression Systems' (1934) first pointed out the complications that arise if one applies regression analysis to variables among which several independent linear relations exist. Should these relationships be exact, then there exist two closely related solutions for this problem, viz. 1. The estimation of 'stable' linear combinations of coefficients, the so-called estimable functions. 2. The dropping of the well-known condition of unbiasedness of the estimators. This leads to minimum variance minimum bias estimators. This last solution is generalised in this book for the case of a model consisting of several equations. In econometrics however, the relations among variables are nearly always approximately linear so that one cannot apply one of the solutions mentioned above, because in that case the matrices used in these methods are, although ill-conditioned, always of full rank. Approximating these matrices by good-conditioned ones of the desired rank, it is possible to apply these estimation methods. In order to get an insight in the consequences of this approximation a simulation study has been carried out for a two-equation model. Two Stage Least Squares estimators and estimators found with the aid of the above mentioned estimation method have been compared. The results of this study seem to be favorable for this new method.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Monograph & others Monograph & others CBN HQ Library General Stacks Non-fiction 330.01'51 NEE (Browse shelf(Opens below)) Available 31008100133889

Includes bibliographical references: p. 100-103.

It was R. Frisch, who in his publications 'Correlation and Scatter Analysis in Statistical Variables' (1929) and 'Statistical Confluence Analysis by means of Complete Regression Systems' (1934) first pointed out the complications that arise if one applies regression analysis to variables among which several independent linear relations exist. Should these relationships be exact, then there exist two closely related solutions for this problem, viz. 1. The estimation of 'stable' linear combinations of coefficients, the so-called estimable functions. 2. The dropping of the well-known condition of unbiasedness of the estimators. This leads to minimum variance minimum bias estimators. This last solution is generalised in this book for the case of a model consisting of several equations. In econometrics however, the relations among variables are nearly always approximately linear so that one cannot apply one of the solutions mentioned above, because in that case the matrices used in these methods are, although ill-conditioned, always of full rank. Approximating these matrices by good-conditioned ones of the desired rank, it is possible to apply these estimation methods. In order to get an insight in the consequences of this approximation a simulation study has been carried out for a two-equation model. Two Stage Least Squares estimators and estimators found with the aid of the above mentioned estimation method have been compared. The results of this study seem to be favorable for this new method.

rpm 29/11/2017

Loans

There are no comments on this title.

to post a comment.